
SIGPLAN
ACM

Garbage In/Garbage Out

COMFY—A Comfortable Set of Control Primitives for
Machine Language Programming

Author: Henry G. Baker, http://home.pipeline.com/˜hbaker1/home.html; hbaker1@pipeline.com

Henry G. Baker1

Laboratory for Computer Science
Massachusetts Institute of Technology
545 Technology Square
Cambridge, MA 02139

Structured programming advocates the elimi-
nation of the GOTO from the set of primitives
for a computer language. Yet at the machine
language level, almost all machines offer only
the conditional or unconditional branch as the
basic control primitive. Vaughan Pratt has sug-
gested using instead pseudo-non-deterministic
programming (as well as the COMFY name).
We present a new set of machine language
control primitives based on Pratt’s suggestion
which are simpler to implement than if-then-
else and do-while and are more flexible at the
same time. The machine language implemen-
tation of these primitives requires nothing more
complicated than a stack; the size of the stack
needed (exclusive of programmer-defined sub-
routine control points) isO(d), where d is
the operator depth of the program. This is
much less space and machine complexity than
would be required for a true backtracking con-
trol structure. The user can emulate if-then-
else, do-while, repeat-until, etc., with macros
using these primitives if he so desires.

A machine language program using our primitives is built
up from individual actions and tests which are com-
bined intosequences, alternatives, and loops. Actions
are primitive instructions executed for their side-effects
such as “add x to accumulator 3”, “ move a
to b”, or “increment z”. Tests are primitive in-
structions executed to produce a boolean value; e.g.,

1This previously unpublished note was written June 29, 1976,while
the author was a graduate student at M.I.T. It has not been modified
except for light editing. This research was supported by theAdvanced
Research Projects Agency of the Department of Defense and was mon-
itored by the Office of Naval Research under contract number N00014-
75-C-0661.

“x>y”, “ a=0”, or “overflow?”. Tests are distin-
guished from actions in that they can eithersucceedor
fail, while actions can onlysucceed. The convention is
that if the predicate value is true then the predicate suc-
ceeds, and otherwise it fails.

The semantics of success and failure depend entirely
upon the semantics of sequences, alternatives, and loops.
A sequenceformed from the two program fragmentsA
andB, written “A;B”, is executed by first executingA and
if it succeeds then executingB. If A fails, thenB is not ex-
ecuted and the whole sequence fails. Likewise, ifA suc-
ceeds andB fails, the whole sequence fails. COMFY is
a poor man’s non-deterministic programming language,
becauseany side effects produced by a program fragment
before failing are not undone in the course of failing.
Since “;” is obviously an associative operator,long se-
quencescan be written without parentheses and still be
unambiguously interpreted; e.g., “A;B;C;D”. A long se-
quence will succeed only if every fragment succeeds; it
will fail on the leftmost failing fragment.

We will abbreviate long sequences of the form
A;A;...;A (m A’s) asAm, wherem is a positive in-
teger. We also defineA0 ≡ succeedfor completeness.
This notation is well-defined due to the associativity of
sequences.

Alternatives

An alternativeconsists of two program fragmentsA and
B linked by the alternative operator “|” as in “A|B”. The
semantics of the alternative are dual to those of the se-
quence. FirstA is executed. If it succeeds, then the whole
alternative succeeds immediately without executingB. If
A fails, thenB is executed and its success or failure be-
comes the success or failure of the whole alternative ex-
pression. Like the sequence operator, the alternative op-
erator is associative, allowing long chains of alternatives
to be written unambiguously without parentheses. We no-
tice that for a chain of alternatives to succeed, at least one
must succeed and only the leftmost successful alternative

23



SIGPLAN
ACM

Garbage In/Garbage Out

will be executed. Furthermore, the chain will fail if and
only if all of the alternatives fail.

Loops

With only sequences and alternatives, only finite (tree-
like) programs can be written. The loop expression al-
lows us to write programs whose execution length is not
bounded. Aloop consists of a program fragmentA fol-
lowed by the operator∞, as inA∞. The semantics of
this loop expression are equivalent to “(A;A; ...)”, where
“ ...” means “and so on, to infinity.” In other words,A is
executed over and over again until it fails; then the whole
loop fails. If A never fails, then the loop expression will
continue executing forever; it will neversucceed.

Inversion

Inversion is a monadic operator which takes an expres-
sion, executes it, and inverts the meaning of its success
and/or failure. Inversion of an expressionA is writ-
ten as “¬A”. Inversion can not be simulated by se-
quences, alternatives,succeedand fail, in an uninter-
preted (pure) COMFY because both sequence and alter-
native are monotonic operations, composition preserves
monotonicity, and inversion is not monotone.

Subroutine Calling

COMFY allows the definition of subroutines with
mnemonic names. The existence of a stack for saving
return points is assumed; hence subroutines can be recur-
sive. Like most machine languages, COMFY avoids ar-
guments by avoiding parameters; arguments are the pro-
grammer’s responsibility. Likewise, returned values are
the programmer’s responsibility.2

In a machine implementation using only one stack,
stack (LIFO) discipline must be maintained by both sub-
routine call and return as well as by the sequence, alter-
native, loop, and inversion primitives. Therefore, a re-
turn from a subroutine cannot be made from other than
parenthesis level zero; this is tantamount to running off
the end of the code of a sequence which implicitly suc-
ceeds or running off the end of an alternative which im-
plicitly fails.

(In this context, we point out that COMFY would make
a good control structure for APL, which currently has

2A “condition code” is a convenient place to return the boolean value
from a subroutine which implements a predicate/test.

none. The issues COMFY addresses are all orthogonal to
those that APL addresses, so the two might make a good
marriage. The infix notation and shallow dynamic vari-
able binding of APL make a good interactive language.
COMFY would enhance that ease-of-use-interaction fea-
ture.)

Syntax

We will assume from now on that the four operators “|”,
“;”, “ ¬”, and “∞” have binding power (precedence)
which increases from left to right in the preceding list.

With these four constructs and the two trivial testssuc-
ceedand fail, we can simulate many other useful con-
structs. Some of the simulations follow.

If-then-else

Before trying to simulate the construct “if B then A
else C” in COMFY, we must define what it means. The
intuitive meaning would be: executeB; if it succeeds, ex-
ecuteA and its success or failure becomes the success or
failure of the whole expression; ifB fails, then executeC
and its success or failure becomes that of the whole ex-
pression. These semantics are analogous to the meaning
of the Algol “if B then A else C” in the case that
A andC are boolean-valued expressions.

But if-then-else in general cannot be simulated exactly
with “ ;”, “ |”, and “¬”! We mean by exact simulation
one which would place no restrictions on the expres-
sionsB, A, andC. However, in the important special case
thatB has no side-effects and is not affected byA’s side-
effects, “if B then A else C” can be simulated by
“B;A|¬B;C”, because “¬B” protectsC from executing if
A fails. This can be made a bit more readable by defin-
ing “→” to be equivalent to “;”: “ B → A|¬B → C”.
Finally, if A cannot fail, then the simulation optimizes to
“B → A|C”, which is exactly BCPL syntax for condition-
als.3

Do-while

The semantics for the construct “while B do E” are
not usually defined for the case whereE can fail; there-
fore we are free to define them as we please. We emu-
late this expression in COMFY by¬(B;E)∞ which ei-
ther loops forever or fails. It can fail either byB failing

3In our implementation of COMFY, if-then-else is primitive,so it
does not have to repeat the evaluation ofB, and thereby avoids the limi-
tations that that redundant evaluation entails.

24



SIGPLAN
ACM

Garbage In/Garbage Out

or E failing. If the programmer does not wish to termi-
nate the loop upon failure byE, he should instead use
¬(B; (E|succeed))∞. Using “→” for “ ;”, the while con-
struct becomes¬(B → E)∞.

Repeat-until

The construct “repeat E until B” can be written in
our language¬(E;¬B)∞. This works because of our con-
vention thatE is executed beforeB, and any side-effects
are not nullified ifB fails.

Extended if-then-else; LISP’sCOND

The extended if-then-else expression, equivalent to
LISP’s (COND (B1 E1)(B2 E2)...(Bn En)) can
often be emulated asB1;E1|B2;E2|...|Bn;En or more
readably asB1 → E1|B2 → E2|...|Bn → En.4

Case

Unfortunately, this structured programming primitive re-
sists attempts to simulate it straight-forwardly in terms of
the other primitives. Therefore, it must remain primitive
in order to gain efficiency during execution.

Backtracking

Although COMFY does not support true non-
deterministic programming, backtracking can be
done explicitly within it. If, for example, in the progam
A|B we would like to undo any side-effects caused byA
before failing, we could insert another alternativeA−1,
which is charged with undoingA, i.e. (A|A−1; fail|B).
Thus, whenA fails, A−1 is executed to undoA’s side-
effects and then fails again soB can be executed. (A−1

is only a mnemonic device; this−1 superscript is not a
COMFY operator.) IfA can fail at more than one point,
it may be more convenient to undo many side-effects
at once, through saving and then restoring some state
information. If “S” is a save sequence, “E” is a program
which can fail, “I” is an ignore-saved-information
sequence, and “R” is a true restore sequence, then
“S;E;I|R;fail” will have no side-effects ifE fails and
will haveE’s side-effects ifE succeeds.

4Of course, for this emulation theEi must not fail; this limitation is
removed in the implementation by expressing extended if-then-else in
terms of the primitive if-then-else.

Programming Examples

We give a few examples to show how the notation is used
in real programming. The first program is trivial; it prints
the integers from 1 to 10.

In ALGOL-like notation:

x:=1;
while x<11 do
begin
print x;
x:=x+1

end;

In COMFY notation:

x:=1; ¬(x<11 → print x; x:=x+1)∞

The second program is a subroutine that computes the
greatest common divisor of positiveX and positiveY and
leaves the result inY.

GCD: while X>0 do
if X>Y then X:=:Y else Y:=Y-X;

In COMFY notation:

GCD: ¬(X>0 → (X>Y → X:=:Y | Y:=Y-X))∞

The third program scans a floating point number in
FORTRAN format from an input stream. “S’string’”
tests if’string’ is next in the input stream. If not, it
fails. If so, it succeeds and moves the buffer pointer past
’string’. The program is simply an edited form of the
BNF syntax for these numbers whereǫ is succeedand∅ is
fail! We will not attempt to give an equivalent Algol-like
program for this example.

NUMBER: INTEGER;(S’.’;DIGSEQ); (S’E’;INTEGER)

INTEGER: (S’+’|S’-’|succeed); DIGSEQ

DIGSEQ: ¬(S’0’|S’1’|S’2’|S’3’|S’4’|S’5’|S’6’|S’7’|S’8’|S’9’)∞

Algebraic properties of sequences, alterna-
tives, loops, and inversions

Sequences, alternatives, and inversions have a remarkable
similarity to the boolean operatorsand, or, andnot. In
fact, for any boolean expression used for program control
purposes, such as loop or conditional control, the anal-
ogy is exact. Thus, “if A∧B then C else D” can
often be simulated by “(A;B);C|D” (the parentheses

25



SIGPLAN
ACM

Garbage In/Garbage Out

are used only for emphasis; they are not required here),
“while A∨B do C” is simulated by “¬((A|B);C)∞”
(here the parentheses are required). Again, we can make
these simulations much more readable by writing “∧” for
“;” and “∨” for “ |”; the above program fragments be-
come “A ∧ B → C|D” and “¬(A ∨ B → C)∞” (assum-
ing “∨” is the same as “|” except for syntactic binding
power).

The looping operator “∞” reminds one of the “∀x” op-
erator of the first order predicate calculus; it is a “while”
looping operator because success keeps it looping. We
can define a dual operator “*” such thatA∗ ≡ (A|A|...).
This is an “until” looping operator because success stops
it from looping.

We first list properties which are true, followed by
some properties which are not true in general, but are true
for interesting special cases.

1. (A;B);C ≡ A; (B;C). Also, (A|B)|C ≡ A|(B|C). (As-
sociativity).

2. A; succeed≡ succeed;A ≡ A ≡ A|fail ≡ fail|A. (Iden-
tities).

3. succeed|A ≡ succeed. fail;A ≡ fail. (Nil-potence).

4. Am;An ≡ Am+n. (Am)n ≡ Amn. (Laws of expo-
nents).

5. ¬¬A ≡ A. (Two-valued logic).

6. ¬(A|B) ≡ ¬A;¬B. Also,¬(A;B) ≡ ¬A|¬B. (DeMor-
gan’s Laws).

7. (A∞)∞ ≡ A∞. A;A∞ ≡ A∞. A∞;A∞ ≡ A∞. In fact,
A∞;B ≡ A∞, for anyB! (Closure).

8. ¬A∞ ≡ (¬A)∗. Also ¬A∗ ≡ (¬A)∞. (Generalized
DeMorgan laws).

-1. “;” is neither idempotent nor commutative, in gen-
eral.

-2. “|” is neither idempotent nor commutative, in gen-
eral. However, a true non-determinism would make “|”
both.

-3. “;” distributes over “|” only sometimes. “|” almost
never distributes over “;”.

-4. A|succeedis not the same assucceed. Also, A; fail is
not the same asfail.

Redundancy and Completeness

DeMorgan’s laws tell us that alternatives can be sim-
ulated by sequence and inversion; similarly, sequence

can be simulated by alternative and inversion. There-
fore, at the machine language level, we need only imple-
ment either sequences or alternatives, and can simulate
the other. However the sets{sequence, inversion, loop}
and{alternative, inversion, loop} are both independent,
meaning that neither set can be reduced without reducing
the power of the language.

Sequences, inversion, and loops are not complete be-
cause there are at least two constructs which have non-
optimum COMFY simulations. One is the “case” state-
ment or “computed GOTO” which allows a quick se-
lection from among a host of alternatives. The other is
the multiple-exit loop—a loop with several exit condi-
tions, each going to a different place. The semantics
can be simulated, but only at the cost of repeating the
exit tests after loop termination to determine what to do
next. For example, a loop with bodyB and termina-
tion conditionsC andD might want to gotoE andF, re-
spectively, upon termination. This could be simulated by
(C ∨ D|¬B)∗; (C → E|D → F). Actually, in this case,
repeating the condition for how control got to that place
in the program might be a good idea for readability and
ease in understanding a program.

Sources

Although the immediate source for COMFY was
Vaughan Pratt [Pratt76], there are some striking similari-
ties between it and a series of syntax-directed compilers,
all called META, started by Schorre [Schorre64] and con-
tinued by Schneider and Johnson [Schneider64]. These
META compilers were recursive parsers for determinis-
tic context-free languages constructed by converting each
BNF syntax equation of a suitable grammar into a recur-
sive subroutine. Non-determinism was avoided by proper
choice of the equations and clever factoring (property -3,
above). Left recursive syntax equations were rewritten as
loops to avoid stack overflow.

Schorre’s META II had sequences specified by juxta-
position), alternatives specified by “/”, loops specified by
$E (meaning¬E∞ in COMFY), and recursion without
parameters. Tests and actions were extremely rudimen-
tary; the only test besidessucceed(called.EMPTY) was
the comparison of a character string with an input buffer
for a match and update the buffer pointer if successful.
The only action was.OUTPUT(...), which placed in-
formation into an output buffer.

Schneider and Johnson’s META-3 added tests which
did not reference or affect an input stream and expanded
the class of actions to include any imperative operation

26



SIGPLAN
ACM

Garbage In/Garbage Out

which did not affect the succeed/fail flag. Thus, it was
the first META which could be called a programming lan-
guage.

The only significant difference between META’s and
COMFY’s semantics seems to be in the treatment of se-
quences. META’s sequences were required to start with
a test; a failure at any other than the first position caused
an error stop (this generalization is due to Pratt). Pre-
sumably, this restriction was to keep the semantics of the
language consistent with that of a true non-deterministic
(backtracking) implementation. However, the addition of
unrestricted tests and actions in META-3 made that con-
sistency impossible.

The duality of sequence and alternative noticed by Pratt
does not appear to have been known by the META design-
ers. Furthermore, the inversion operator which makes this
duality explicit was not used by either META or Pratt; it
is new. Finally, the current definition of loop in COMFY,
which for completeness requires an inversion operator in
the language, is also new.

In a future column, we will show how to program the
COMFY compiler.

References

[Pratt76] Pratt, Vaughan. Personal communication,
1976.

[Schorre64] Schorre, D.V. “META II—A Syntax-
oriented Compiler Writing Language.”Proc. 19th
ACM Nat’l. Conf., Aug. 1964.

[Schneider64] Schneider, F.W., and Johnson, G.D.
“META 3—A Syntax-Directed Compiler Writing
Compiler to Generate Efficient Code.”Proc. 19th
ACM Nat’l. Conf., Aug. 1964.

Henry Baker has been diddling bits for 35 years, with
time off for good behavior at MIT and Symbolics. In
his spare time, he collects garbage and tilts at wind-
bags. This column appeared in ACM Sigplan Notices
32,6 (Jun 1997), 23-27.

27


